Roman Domination over Some Graph Classes
نویسندگان
چکیده
A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open problem mentioned in [2] by showing that the Roman domination number of an interval graph can be computed in linear time. We also show that the Roman domination number of a cograph can be computed in linear time. Besides, we show that there are polynomial time algorithms for computing the Roman domination numbers of AT-free graphs and graphs with a d-octopus.
منابع مشابه
Weak signed Roman domination in graphs
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
متن کاملWeak signed Roman k-domination in graphs
Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...
متن کاملTotal double Roman domination in graphs
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
متن کاملOn the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملFractional Roman Domination
A function f : V (G) → {0, 1, 2} is a Roman dominating function if for every vertex with f(v) = 0, there exists a vertex w ∈ N(v) with f(w) = 2. We introduce two fractional Roman domination parameters, γR ◦ f and γRf , from relaxations of two equivalent integer programming formulations of Roman domination (the former using open neighborhoods and the later using closed neighborhoods in the Roman...
متن کاملNonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
متن کامل